On the wave length of smooth periodic traveling waves of the Camassa–Holm equation☆

نویسندگان

  • A. Geyer
  • J. Villadelprat
چکیده

This paper is concerned with the wave length λ of smooth periodic traveling wave solutions of the Camassa-Holm equation. The set of these solutions can be parametrized using the wave height a (or "peak-to-peak amplitude"). Our main result establishes monotonicity properties of the map [Formula: see text], i.e., the wave length as a function of the wave height. We obtain the explicit bifurcation values, in terms of the parameters associated with the equation, which distinguish between the two possible qualitative behaviors of [Formula: see text], namely monotonicity and unimodality. The key point is to relate [Formula: see text] to the period function of a planar differential system with a quadratic-like first integral, and to apply a criterion which bounds the number of critical periods for this type of systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traveling Wave Solutions of the Camassa-Holm and Korteweg-de Vries Equations

We show that the smooth traveling waves of the Camassa-Holm equation naturally correspond to traveling waves of the Korteweg-de Vries equation.

متن کامل

Numerical study of traveling-wave solutions for the Camassa–Holm equation

We explore numerically different aspects of periodic traveling-wave solutions of the Camassa–Holm equation. In particular, the time evolution of some recently found new traveling-wave solutions and the interaction of peaked and cusped waves is studied. 2005 Elsevier Ltd. All rights reserved.

متن کامل

On Traveling Wave Solutions of the Θ−class of Dispersive Equations

We investigate traveling wave solutions to a class of dispersive models – the θ-equation of the form ut − utxx + uux = θuuxxx + (1− θ)uxuxx, including two integrable equations, the Camassa-Holm equation (θ = 1/3) and the Degasperis-Procesi equation(θ = 1/4) as special models. When 0 ≤ θ ≤ 1 2 , strong solutions of the θ-equation may blow-up in finite time, correspondingly, the traveling wave so...

متن کامل

On Traveling Wave Solutions of the Θ-equation of Dispersive Type

Traveling wave solutions to a class of dispersive models, ut − utxx + uux = θuuxxx + (1− θ)uxuxx, are investigated in terms of the parameter θ, including two integrable equations, the Camassa-Holm equation, θ = 1/3, and the Degasperis-Procesi equation, θ = 1/4, as special models. It was proved in [H. Liu and Z. Yin, Contemporary Mathematics, 2011, 526, pp273–294] that when 1/2 < θ ≤ 1 smooth so...

متن کامل

On the Bifurcation of Traveling Wave Solution of Generalized Camassa-Holm Equation

The generalized Camassa-Holm equation ut + 2kux − uxxt + auux = 2uxuxx + uuxxx + γuxxx is considered in this paper. Under traveling wave variable substitution, the equation is related to a planar singular system. By making a transformation this singular system becomes a regular system. Through discussing the dynamical behavior of the regular system, the explicit periodic blow-up solutions and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 259  شماره 

صفحات  -

تاریخ انتشار 2015